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ABSTRACT: 

An increasing number of industrial applications demand a comprehensive analysis of both structural and 

chemical composition. Typically, non-destructive testing techniques focus on either structural or chemical 

characterization but do not deliver both. 3D X-Ray Computed Tomography (XCT) scans are well-suited for 

determining the internal and external structure of an object at high resolution. The attenuation value it 

delivers can however be the same or very similar for different materials. For a detailed chemical analysis 

XCT is therefore combined with spectral characterization techniques such as K-Edge Absorptiometry or X-

ray Fluorescence Spectroscopy. In this paper, we are extending a previously introduced framework for 

visualization and analysis of specimens scanned with these two modalities in multiple ways: For better 

understanding the dependencies between the spectral energy levels, we propose Spectral Similarity Maps. 

Spectral Functional Boxplots visualize the statistical distribution of the spectral data. The Spectrum Explor-

er improves the analysis of specimens of unknown composition. We demonstrate the usefulness of our 

techniques on several use cases. 

 

Figure 1. Introduced visualization methods. The upper middle shows a slice view of the XCT data. On the 

left side is the list of available reference spectra and the periodic table, both used for the interactive explo-

ration of unknown elements. The bottom right shows a Functional Boxplot in the Spectrum View, and the 

upper right shows the Similarity Map. 
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1 INTRODUCTION 

Industry increasingly relies on non-destructive techniques for detailed product inspection. One 

modality gaining more and more attention in this area is 3D X-ray Computed Tomography 

(XCT). According to Heinzl [2], it is fast and can deliver high-resolution scans revealing internal 

and external structures. At the moment there is a rising demand to also extract a detailed chem-

ical analysis of the scanned object. An XCT device has only limited capabilities in this respect. 

Spectroscopic methods like X-ray Fluorescence Spectroscopy (XRF) or K-Edge Absorptiometry 

provide such data, but typically at a lower resolution and with less structural detail when com-

pared to XCT. Therefore data from both modalities are required, so XCT and spectroscopic 

methods are combined into one device [3]. 

X-Ray Computed Tomography works by placing a specimen in the direct line between an X-

Ray source and a detector. The detector measures the attenuation of the X-Ray when passing 

through the object. When applying this principle for multiple angles, the resulting 2D absorption 

images may be reconstructed to retrieve a volumetric 3D representation of the complete object, 

where each voxel represents the attenuation of the material at this position [4]. In X-Ray Fluo-

rescence Spectroscopy, the detector is placed to the side of the object to measure the charac-

teristic energies of photons emitted when the object is irradiated with X-Rays [5]. The acquisition 

is repeated from multiple angles to retrieve a 3D representation of the object, where for each 

voxel a full spectrum is available [6]. K-Edge Absorptiometry in contrast uses a classical CT 

setup. It retrieves information on the elemental composition by exploiting the connection be-

tween attenuation and X-ray photon energy [7]. 

If a combination of XCT and spectral data is available from the same object, specialized visu-

alization and analysis techniques are required. In our previous work [1] we identified the follow-

ing three analysis tasks: 

 Global material composition analysis. The questions to be answered are: Which materi-

als are present in the specimen? How much is there of each material? Where are these lo-

cated? 

 Local material composition analysis. The global analysis guides analysts towards re-

gions of interest. Local analysis provides methods for probing their detailed composition 

and structure. 

 Analysis of unknown and foreign materials. Specimens of unknown composition are an-

alyzed for their element contents and composition. 

We will start with a short introduction into data-visualization methods available so far for such a 

data combination (chapter 2) which will lead to the motivation for coming up with the InSpectr 

tool from our previous work [1]. Chapter 3 describes the dataset we used to test our work. We 

will then give a brief overview on how InSpectr solves the above tasks (chapter 4). Three addi-

tional visualization methods for this framework are the main contribution of this paper: The 

Spectral Functional Boxplot, the Spectral Similarity Map and the Spectrum Explorer. These are 

explained in detail in chapter 5 where we also outline their usefulness for solving user tasks, 

and the advantages they provide in comparison to the methods introduced in our previous work. 

Chapter 6 wraps up with concluding remarks and an outlook on the work we plan to do in the 

future. 

2 RELATED WORK 

This work is geared towards the case where XCT and the spectral dataset are consecutively 

acquired by the same device. The two modalities need to be calibrated and aligned once after 

the device is assembled, for example by the method proposed by Liu et al. [8]. After that, no 

further registration of the two datasets is required. For the application of the methods to da-

tasets acquired by different devices, we refer the reader for example to the nonrigid multimodali-

ty image registration method by Mattes et al. [9]. 
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In non-destructive testing, material scientists typically start their analysis using software tools 

like FEI Avizo [10]. These tools provide an abundance of generic visualizations and quantitative 

analysis for volumetric data, and thus are especially suitable for the XCT data. They do not in-

clude analysis tools adapted for our specific combination of datasets. This means that linking 

between the two datasets and the possibility of combining them in visualization is limited or only 

possible with extensive in-depth knowledge of the software packages. 

Tools for analyzing spectral data like HyperSpy [11], MicroAnalysis Toolkit [12] or PyMca [13] 

allow the user to analyze single or multiple spectra. They provide sophisticated methods for 

displaying and processing the spectra, for example regarding element decomposition. They 

usually do not put them into spatial context and provide no possibility to show other kinds of 

data alongside the spectral data. 

Visualization tools like ParaView [14], VisIt [15] or MeVisLab [16] provide generic visualization 

and analysis support for a wide range of datasets. They however provide no specialized support 

for the combination of XCT and spectral data. 

There is already a device on the market combining the XCT and XRF modalities. The soft-

ware shipped with this system provides simple visualization techniques for both datasets [17, 

18]. It is limited to showing either separate element maps of the single elements and the XCT 

data, or an overlaid view of all these maps. 

3 DATASET 

Tests were conducted on the 2D phantom scanned by Kuang et al. [6] with the prototype of a 

combined XRF/XCT device at Stanford medical university. It consists of a cylinder filled with 

water, containing tubular insertions of Barium (Ba), Gadolinium (Gd) and Gold (Au) as well as a 

mixture of those three in a diluted suspension. 

4 INSPECTR 

 

Figure 2. The InSpectr interface contains an XCT slice view, a pie chart and periodic table view showing 

the element concentration at the current mouse position in the slice view, a reference spectra list and the 

spectrum view. 

InSpectr [1] offers a wide range of views and visualization methods to address all the tasks out-

lined in the introduction. For the global analysis, the Aggregated Spectrum as well as the Spec-

tra Lines and Spectra Histogram (the latter one being visible in the spectrum view in the lower 

XCT Slice View Concentration View Reference Spectra 

Spectrum View 
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part of Figure 2) provide information on which elements are contained in the specimen and in 

which quantity. The Spectral Color Image (visible in the Magic Lens superimposed on the XCT 

slice view in the upper left part of Figure 2) and Element Maps in the slicer and the 3D view 

enable the localization of element occurrences. Local analysis is available from both spectral 

and XCT side. Selection in the spectrum view highlights the regions with spectra leading 

through the selected region in the XCT slice. Spectrum and concentration probing link infor-

mation on the local spectrum and composition to the XCT slice view. The analysis of unknown 

materials is supported through the ability to display reference spectra in the spectrum view. 

InSpectr however lacks the ability to statistically analyze the spectral information, to find correla-

tions between peaks and to easily identify unknown elements. 

5 NEW VISUALIZATION TECHNIQUES 

5.1 Spectral Functional Boxplots 

 

Figure 3. (a) An example for a “classical” boxplot. (b) A function band is spanned by the functions f and g 

(the grey area). Function h is completely inside the band, function i only between 0 and 0.5, but not be-

tween 0.5 and 1. Considering the collection of the four functions, there are six possible function bands of 

function pairs. The Band Depth for function h would be 5/6, since it is contained in all function bands ex-

cept the one spanned by f and i. (d) A functional boxplot for the rectangular marked region in (c). The me-

dian function is the line in the center (violet), the interquartile range the region around it (yellow), the outer 

region (blue) is 1.5 times the interquartile range. (e) The spectra histogram for the same region as (d). 

The well-known Boxplot (Figure 3a) visualizes five important statistical characteristics of a nu-

merical dataset: The median, first and third quartile and usually minimum and maximum of the 

non-outlying values. Functional Boxplots, introduced by Sun and Genton [19], extend this con-

cept for collections of functions. They are created by ordering the functions by a metric called 

band depth. A function band of a set of functions is a region created in a way so that all func-

tions of the set fit into it. As an example, consider the grey area in Figure 3b, it indicates a func-

tion band spanned by the functions f and g. For band depth calculation, we create the set S of 

the function bands from all possible function pairs. The band depth for a function f is the number 

of bands from S inside of which f fits into over the whole considered interval. The functions are 

then sorted by decreasing band depth. This creates an ordering from central functions to those 

lying more outward. The first, most central function in this order is considered as the median 

function. The interquartile region is determined as the function band of the first fifty percent of 

the functions ordered by the band depth. For the formal details of the calculation, we refer the 

reader to the original work on band depth by López-Pintado and Romo [20]. 
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We calculate the band depth for all spectrum functions, and visualize them in a similar way as 

proposed by Sun and Genton [19], as can be seen in Figure 3. The example in Figure 3d shows 

the functional boxplot and the histogram of spectra for the same region of interest. The user 

needs information on the material distribution in this region. The selected region contains a big 

spot of Gadolinium, and a small spot of a mixture of the elements. In the functional boxplot, the 

median reaches high up in the Gadolinium peak, indicating a high average concentration. The 

broad interquartile range indicates a high fluctuation range. At the other peaks, the median re-

mains flat. In contrast to that, the spectra histogram in Figure 3e for the same region shows 

similar patterns for all the peaks. The shown real-world spectra have low overall-counts and 

contain a high level of noise, which deteriorates the visualization quality to some extent, but this 

is similar in both spectra histograms and functional boxplots. In comparison to the spectra histo-

grams, the functional boxplot come with higher computational complexity. For datasets exceed-

ing a few thousand spectra, the accurate computation of the band depth for all spectra is prohib-

itively expensive. We compensate this by doing an adaptive regular sampling on the set of 

available function bands during band depth calculation instead of the exhaustive computation. 

5.2 Spectrum Explorer 

 

Figure 4. When Spectrum Explorer is active, hovering over the periodic table (b) shows in the spectrum 

view (a) the reference spectrum and/or the characteristic energy lines for the element under the mouse 

cursor. 

InSpectr provides limited capabilities for exploring unknown spectra. It displays reference spec-

tra when the user selects them in a list. If the precise element contained in a sample is not 

known, this is a tedious process. In this work we introduce the Spectrum Explorer: While moving 

the mouse over the periodic table, X-ray spectra from reference measurements [21] and charac-

teristic energy lines denoting the expected positions of the element peaks are overlaid in the 

spectrum view over any other spectrum visualization. In Figure 4, the user has successfully 

identified Barium as contained element by matching the reference spectra and energy lines to 

peaks in the aggregated maximum spectrum. 

5.3 Spectral Similarity Maps 

Applying the ideas of Bruckner’s and Möller’s Isosurface Similarity Maps [22] to our spectral 

data, we introduce the Spectral Similarity Map for better understanding the dependencies be-

tween the spectral energy levels. The main purpose of the Spectral Similarity Map is to show 

which parts of the spectrum have strong spatial correlation in the data. For example, if a com-

posite material containing different chemical elements is present in the data, individual spectral 

peaks of these elements will always appear in the same regions of the dataset. By finding such 

correlated patterns in the spectrum it is possible to reason about which composite materials or 

mixtures are present. To achieve this we need to calculate a metric for the similarity between 

two arbitrary energy levels. For this purpose we consider the values of all voxels for an energy 

level as a volume, and calculate the similarity of this volume to the volume of every other energy 
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level through ITK’s [24] implementation of the mutual information algorithm as proposed by Vio-

la and Wells [23]. 

 

Figure 5. Similarity Map of a spectral dataset (a). The matrix shows the intensity-coded correlation be-

tween energy levels; the higher the correlation between the energy levels mapped along both the x- and y-

Axes are, the brighter the pixel (x, y). On the right edge of the Similarity Map, an accumulated histogram of 

similarity is shown. The currently selected energy pair, marked by the red circle, is also highlighted in the 

spectrum view shown in (b) by the two vertical lines, in the context of the aggregated spectrum. The right 

line (red) marks the energy selected on the x-Axis, the left one (blue) the energy on the y-Axis. 

We then display the similarity using an intensity map image as shown in Figure 5a. The similari-

ty map is symmetric along its diagonal because the mutual information similarity metric is com-

mutative. Mouse Movement over the map area highlights the respective energy levels of the x- 

and y-Axes in the spectrum view as can be seen in Figure 5b. This helps in identifying the pre-

sent elements through the Spectrum Explorer. If two peaks show high similarity on the map, this 

indicates that either these peaks belong to the same element or that the elements they belong 

to often occur at the same place. If the specimen is not a completely homogeneous mixture of 

elements, the peaks of the same element will have the highest correlation. 

6 CONCLUSION AND FUTURE WORK 

In this paper, we introduced three extensions to the InSpectr framework. Functional Boxplots 

provide insights into the distribution of spectrum functions. Similarity Maps allow the investiga-

tion of correlations in the spectral data and can be used in conjunction with the Spectrum Ex-

plorer to ease the process of identifying specimen of unknown composition. For the future we 

are planning to test our extensions with a variety of real and virtual test datasets. We are further 

planning to extend our cooperation with material scientists to prove the usefulness of our meth-

ods in many real-world scenarios. 
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